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Abstract. Two-magnon bound states are exact eigensiates of the Heisenberg ferromagnet
whose energy [alls outside the two-magnon contiouum. The well-grounded expectation
that at least one bound state exisls for any wave vector in 2D Heisenberg ferromagnets
seems to be violated when numerical calculations are performed in the triangular lattice.
In contrast we show analytically that such a result is a spuricus consequence of the
numerical computation and we are able to prove that a bound state exists below the
two-magnon band for all wave vectors in the triangular ferromagnet.

1. Introduction

Twvo-magnon bound states are exact eigenstates of the Heisenberg ferromagnet. Wor-
tis [1] proved that at least one bound state exists for any wave vector in the ID
Heisenberg ferromagnetic chain and in the 20 square ferromagnet, while in the sim-
ple cubic lattice bound states exist below the two-magnon continuum only close to
the zone boundary. An intriguing, even though not rigorous, argument of Mattis [2]
suggests that bound states in 2D Heisenberg ferromagnets should exist for any wave
vector. Recently we have suggested [3] that the existence of a two-magnon bound
state at long wavelengths could be a reliable signal of the absence of long range order
(LrO). This is true in the 1D and 2D square ferromagnets where exact calculations of
two-magnon bound states have been performed and where LRO is absent as required
by the Mermin and Wagner theorem {4]. An apparent violation of the thumb rule
we have proposed [3] is found in the triangular ferromagnet, where LRO is certainly
absent, even though no bound states are found in the neighbourhood of the zone
centre [5]. It is worth noticing that the condition for the existence of bound states
given in [5] is exact, but the actual solution has been obtained by numerical evaluation
of the involved integrals. This calculation is reliable when the bound state energy
is sufficiently far from the bottom of the two-magnon band, but we have realized
that this procedure becomes meaningless when the bound state is exponentially close
to the bottom as occurs in aff two-dimensional lattices near the zone centre. Note
that the numerical investigation of the bound state at small wave vectors should also
fail in the 2D square lattice where its occurrence is well established [1, 6]. In the
triangular lattice we find that the bound state energy fuwgg of wave vector K in the
neighbourhood of the zone centre is given by

hwpg = 8JS (1—3;5-!{'2 - exp(—-641r3/\/§K2)) (L1)
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where the first term on the right is the energy at the bottom of the two-magnon
continuum. Equation (1.1} clearly shows why any numerical calculation fails close
to the zone centre. The occurrence of the bound state below the bottom of the
continuum is beyond any numerical accuracy. So we conclude that only an analytic
calculation can detect a bound state in the neighbourhood of the zone centre, as
confirmed in the 2D square Heisenberg ferromagnet [1, 6].

2. Tiwo-magnon bound states in the triangnlar lattice

In this section we prove the existence of two-magnon bound states for any wave
vector in a triangular Heisenberg ferromagnet. The Hamiltonian we consider reads

H=~J 885 2.1)

i,
where i labels the sites of a triangular lattice, § joins the site ¢ with its six ncarest
neighbours (NN), S; is the spin localized on the site z and J > 0 is the ferromagnetic
NN exchange coupling. The two-magnon eigenstate |K) for the bosonic equivalent

Hamiltonian, obtained from the Heisenberg Hamiltonian (2.1) by the Dyson~-Maleev
transformation [7], reads

IKY =" fx(g)al, al, [0) 2.2)
q

where aL is the creation operator of a magnon of wave vector &,
B, =3K+gq ky=1iK —q (2.3)

and fg(q) satisfies the equation

i (w —wgz_K+q —'w-}K-q) fK(QJ

1
=65 2 (Yot + Ta-p = Vizcra — Vix-q) f(P) @4)
> :
where
Vg =13 (cos q: + 2cos 1g_ cos J";—Eiqg’,) 2.5)
hw = E — Ej. (2.6)

In (2.5) we have assumed the lattice space constant to be unity, In (2.6) E is the
eigenvalue of the eigenstate |[K} and E; is the energy of the ferromagnetic ground
state |0). The solution of (2.4) is obtained by looking for the zeros of the following
determinantal equation

det |6, ; + D; ;= Djcos3K;)| =0 i,j=1,2,3 2.7

1
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where
1 COS ¢; COS gy
D, . =8J5—_ 2.8)
£, N;ﬁw 5‘-"1—!{+ —hw_;_ —q
1 cos q.
D, =8J5— 2 . (2.9)
J N ; hw — ﬁw%K+q - ﬁ""’%K—q
The magnon dispersion curve reads
e, =12J 8 [1 -1 (cos ¢, + 2 cos 5q, cos Jgqy)] ) (2.10)

We look for solutions of (2.7) moving along high symmetry directions like 'M (K, =
0,0< K, <2x/v3), X (0 < K, <4x/3, K, =0)and MX (0 < K, < 2%/3,
K, =2n / v3). Along these high symmetry dxrecnons the possible soluuons of (2.7)
are given by
1-Lr=0 ' (2-11a)
25°°

_ ;—S(II+I{)+£§§(III;—2IZI§)=O. (2.11b)
Along the I'M direction we have
f f dzdy Zsm zsiny (2.12)
(6, Ky, y) '
with ¢ = 2¢q,, ¥y = %qu and

d(é, K'y,:c,y) =6+ 2sin’ & + 2 cos 54@1(3, {(1—coszcosy) (213)

where & is the ‘binding energy’ in units of 8J S, so that the bound state energy reads

huogg = 1675 (1 - cos K, ) — 876 (2.14)
I = / / dz dy iz’?‘ Z CZSE;’ @.15)
= ?1_2- j:r fow dedy 2cos z cos Y (c;)(s;,: ;:{oys,g:;n,——yc):os(\/glii)f(y) 2.16)
I,= _%[f: dzdy 25;’&;’”;?:‘;” @17

=2 f / dod ycosQw(coswcosy—cos(\/‘/tl)K)-

4G5, 5,,2,3) 218)
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As one can see, by a direct numerical calculation (2.112) has no solution for any
wave vector so that the only bound state along the I'M direction has to be found
as a solution of (2 116). Numerical investigation of (2.115) leads t0 a bound state
for wave vectors in the range 0. 55!\53 < K, < KZ® (K7® = 2x/V3) in the
most favourable case (S = 1/2) in agreement with ﬁil, even though the present
numerical accuracy is enhanced. Incidentally, at the zone boundary (point M), where
the integrals of (2.15)-(2.18) can be evaluated analytically, one finds that the binding
energy s

1 _

For vanishing wave vectors the solution of (2.115) can only be achieved by evaluating
analytically the logarithmically divergent contributions of integrals (2.16) and (2.18).
In the neighbourhood of the zone centre one has

11._—‘/-:-1-01026578 (2.20)
ki

=1 - 3—"2%,!{; In & (2.21)

I, = -1, (2.22)

Iy=-ir - %Kﬁ In &, (2.23)

Replacing (2.20)—(2.23) in (2.110) one obtains

( 33 )(1+2135‘g——1\ In 5):0. (2.24)

The first factor of (2.24) never vanishes whereas the second factor leads to a binding
energy

§ =exp ( 3?;{',5;) . (2.25)

As one can see, a bound state exists for any wave vector and any S even though the
binding energy decreases exponentially as the the wave vector moves towards the zone
centre. This exponential decaying of the binding energy for K, — O explains why
the numerical approach is hopeless. Note that the numerical solution for S = 1/2
is found only in the range 0.535KZF < K, < KZ® (at K, = 0.55KZB, 6 is
8.4 x 107%), It is obvious that the value of 6 for vamsl:ung h is so smail that
numerical accuracy is low. For § > 1/2 the region is more and more testricted. Let
us now comment upon the appealing argument of Mattis [2] supporting the existence
of at least one bound state for any wave vector in 20 models. This argument gives the
right answer but jt is not rigorous since it supports logarithmic divergence of integrals
like (2.12) or (2.15)-(2.18) as & — O caused by the vanishing of the denominators as
K — 0. This argument does not take care of the possible vanishing of the numerators
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which could regularize the integrals. For instance, in the triangular lattice, o, I; and
I, are regular, whereas /{ and I; are ]oganthmlcally divergent as shown by (2.20)-
(2.23). On the other hand this divergence is sufficient to assure the existence of one
vound state for all wave vectors along the 'M direction.

When evaluated for 0 < K, < 4x/3, K, = 0 (I'X direction), the integrals
appearing in (2.11) become

_ 2sin? z sin? v
P I ELT v ®29
1 (7" cos2x (cos 2z —cos 1 K,)
] z—// dzdy 2°°3 2.2
=2 ) o a6, K1 2,9) *20
1 /7" 2coszcosy (coszcosy —cos 1K)
Il = -—j f drd 4~ 2 2.28
! 72 g Jo v d(éaK;;:xay) ( )
1 {77 cos 2z (cos 2 cos y — cos L K ;)
I, = ——f / dzd - -2 2.29
2=y fo T a5, K, 5,9) @29
1 [ [ cos z cos y (cos 2z — cos 1K)
I = ——/ / ded = —2_ = 2.30
2 T Jo Jo Y d(‘gahmxay) ( )
where
d(6, K ,z,y) =6+ 2cos £ I, sin®z 4 2cos LK, (1 — cos z cos y) (2.31a)

for 0 < K, < 0.89375KZ8 (KZB = 47 /3) and

- —_ iy e 2 1 cos %I{w
d(é, K ,z,y) =6 —2cos 3K cos" z —cos 3 K 2—6;%- +2cosxcosy
(2.31b)
for 0.893 75K 28 < K, < KZ*B. The bound state energy reads
hwps = 24J8 [1 — § (cos LK, + 2cos { K, )] — 8758 (2.32a)

for 0 < K, < 0.893 75K 2% and

21K
hugs = 2478 [1 +1 (cos LK, + gis-Lf-)] _8JS5  (232b)

1
cos 3 K,

for 0.893 75 K28 < K, < KZB. The expressions (2.31) for d(é, K, =, y) and (2.32)
for hwgg concerning different ranges of wave vectors, are introduced by the different
analytic expression of the lower bound of the two-magnon band and are obtained for
the relative wave vectors g = 0 or g = (arccosf(—cos K /4) /(2 cos K_/2)],0),
respectively. The value K, = 0.893 75K?ZB = 4 arccos 1(—1 + +/33) is the point
where these two different determinations cross each other. Equation (2.11z) gives a
bound state for $ = 1/2 in the range 0.91305KZ8 < K, < KZP and no bound
states for § > 1. On the contrary (2.11b) gives a bound state for any S and any
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wave vector. Once again the numerical solution is found only in the range 0.5 K2P <
K, < KZB in the most favourable case of $ = 1/2 (at K, = KZB, § =3.42x10°5
whereas the analytic evaluation of integrals (2.27)-(2.30) close to the zone centre still
leads to (2.24) where K, is replaced by K. The binding energy is then

(233)

5 = exp (_ 641rS)

V3K?2

and the bound state energy for K — 0 is given by (1.1).
Along MX (0 < K, < 2n/3, K, = 2x//3) the integrals appearing in (2.11)
become

I, = 1 /” 4 dzdy 2coszcosy (cosz cosy - sinzsiny +sin 1K,)
(2m) Jordon d(é, Kz, 2, y)
(2.34)
1 T cos 2z (cos 2z — cos LK)
= dzd e 2.35
Il (2m)? -/—'x — ey d(éilfzv z,y) ¢ )
. 1 2 /z x dzdy 2sin zsin y (sin zsin y — cos zcos y —sin 1 K )
(2m)2 J_ o/ d(é, K,, =z, y)
(2.36)
1 o cos 2z (cos z cosy —sin wsin y +sin 1K)
Iz - —“{27")2 ~/:1r - dmdy . d(é, I(;c, Z, y) @37)
1 FogT (cosz cos y —sin zsin y) (cos 2z —cos K}
[ S N 2 &
I, = ——(21‘_)2 .[_r _wdm dy a6, K. 20 0) (2.38)
where

1 pr
sin K,

d(6, K ,z,y) =&+ 2cos %Kx sin? z + sin i1K, ( — 2sin zsin y) .

1 >
Zecosz K,

(2.39)
The bound state energy is

21 e
sin® 2 K,

ﬁLst =24J5 [1 — ':!5- (COS %Kx -} mh—’x

)] — 8J56. (2.40)

Equation (2.11a) leads to a bound state for any wave vector between K = 0 {point
M) and KZB = 2x/3 (point X) for S = 1/2 while the range is restricted to
0< K, <0.90783KZB 0 < K, <0.69012K7%B, and 0 < K, < 0.544 88K?2B,
for S=1, § = 3/2 and § = 2, respectively. Notice that the existence range of
this bound state along the MX direction obtained by numerical calculation is reliable,
because the integral I, given by (2.34) is not singular up to the lower bound of the
two-magnon band (6§ = 0). As one can see, the point A, where this bound state
merges with the continuum, jumps discontinuously towards point M as S increases.
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This behaviour is analogous to what happens in higher dimensions where the existence
region of bound states narrows as S increases.

Equation (2.115) has a solution for any S and any wave vector although the
numerical solution is found only for X, > 0.2 as found in [5], even though our nu-
merical accuracy is better. Indeed, integrals (2.35)—(2.38) can be evaluated analytically
¢lose to M leading to

— 1 3 2
L= =K (2.41)
- 1 — 1 _;___ 2
B=5 - o=k (2.42)
11
Iy= ———Fh 2.43
27 /Es8 T @43)
Iy =iK,. (2.44)

Replacement of (2.41)«(2.44) in (2.116) gives

11 1\ 1 1 .,
so that the binding energy is
_ 1 (885-1\" 1 _, ,
6 T 3232 (43 - 1) 356 K= (246)

In figure 1 we show the bound states along the high symmetry directions T'X, XM
and I'M for S = 1/2. The inset shows the Brillouin zone of the triangular lattice.
For different values of S the scenario is qualitatively unchanged.

Ky

Figure 1. Reduced bound state energy Awgg /8J5
(full circles) as a function of the reduced wave
vector along the directions I'X, XM and 'M of
the triangular feromagnet with $ = 1/2. The
continuous curve represents the bottom of the two-
magnon continuum. The inset shows the Brillouin
r x M r zone,
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3. Summary and conclusions

The study of two-magnon bound states in Heisenberg ferromagnets has been widely
investigated in the past [8]. Satisfactory results are obtained only for ferromagnets
for which the ground state is known and the eigenvalues can be worked out exactly.
However, we have found that the actual evaluation of the involved integrals, usually
performed numerically [5], is very delicate in 2D systems where at least one bound
state exists for all wave vectors even though its binding energy is so small that it
can be found only via analytic calculations. We have proved the existence of one
bound state over the whole Brillouin zone in the triangular lattice in contrast with
previous numerical results [5] and we have also explained the failure of numerical
calcuiation. We conclude that the existence of at least one bound state over the
whole Brillouin zone is a genuine feature of all 20 ferromagnetic Heisenberg models
in agreement with the Mattis argument [2]. The customary numerical approach, that
works well for 30 models and even for large enough wave vectors in 20 models, fails
when the bound state is too close to the bottom of the two-magnon continuum. The
absence of two-magnon bound states in some regions of the Brillouin zone of the
triangular ferromagnet [5] is simply due to insufficient numerical accuracy. We stress
that this limitation is strictly related to the nature of the singularity of the integrals
and cannot be easily overcome. Analytic testing is necessary. Note that in a 3D
model any interlayer coupling J' prevents the divergence of the integrals, so that
the numerical evaluation of the bound states becomes reliable. Our conclusion is
that two-magnon bound states can be satisfactorily studied in ferromagnetic systems
if one proceeds cautiously. On the contrary, in antiferromagnets and helimagnets the
situation is much worse because no exact analytic condition for the bound state can
be achieved because the exact ground state is unknown. A few approximate results
exist for antiferromagnets [9] but nothing at all for helimagnets.
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