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Two-magnon bound states in the triangular ferromagnet 

E Rastelli, S Sedazzari and A %ssi 
Dipanimento di Fisica dell’Universil6, 43100 Parma, Italy 

Received 10 Febmary 1992, in Bnal form 24 March 1992 

Abslreel k - m a g n o n  b u n d  slates are exact eigenslates of the Heisenberg ferromagnet 
whose energy kUs outside the two-magnon mntiouum. The well-grounded expectation 
that at least one b u n d  slate exists for any wave vector in w Heisenberg ferromagnets 
seems lo be violated when numerical calculations are performed in the triangular laltice. 
In mnlrast we show analytically fiat such a result is a spurious mnsequence of the 
numerical mmputation and we are able lo prove that a bound sfate exists below the 
two-magnon band for all wave vectors in the triangular ferromagnet. 

1. Introduction 

Go-magnon bound states are exact eigenstafes of the Heisenberg ferromagnet. Wor- 
tis [l] proved that at least one bound state exists for any wave vector in the ID 
Heisenberg ferromagnetic chain and in the 2D square ferromagnet, while in the sim- 
ple cubic lattice bound states exist below the two-magnon continuum only close to 
the zone boundary. An intriguing, even though not rigorous, argument of Mattis [2] 
suggests that bound states in IQ Heisenberg ferromagnets should exist for any wave 
vector. Recently we have suggested [3] that the existence of a two-magnon bound 
state at long wavelengths could be a reliable signal of the absence of long range order 
(LRO). This is true in the ID and 2D square ferromagnets where exact calculations of 
wo-magnon bound states have been performed and where LRO is absent as required 
by the Mermin and Wagner theorem [4]. An apparent violation of the thumb rule 
we have proposed [3] is found in the hiangular ferromagnet, where LRO is certainly 
absent, even though no bound states are found in the neighbourhood of the zone 
centre [5]. It is Worth noticing that the condition for the existence of bound states 
given in [5] is exact, but the actual solution has been obtained by numerical evaluation 
of the involved integrals. This calculation is reliable when the bound state energy 
is sufficiently far from the bottom of the two-magnon band, but we have realized 
that this procedure becomes meaningless when the bound state is exponentially close 
to the bottom as occurs in all two-dimensional lattices near the zone centre. Note 
that the numerical investigation of the bound state at small wave vectors should also 
fail in the 2D square lattice where its Occurrence is well established [I, 61. In the 
triangular lattice we 6nd that the bound state energy h,, of wave vector K in the 
neighbourhood of the zone centre is given by 
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where the l is t  term on the right is the energy at the bottom of the two-magnon 
continuum Equation (1.1) clearly shows why any numerical calculation fails close 
to the mne centre. The occurrence of the bound state below the bottom of the 
continuum is beyond any numerical accuracy. So we conclude that only an analytic 
calculation can detect a bound state in the neighbourhood of the zone centre, as 
confirmed in the 2~ square Heisenberg ferromagnet [I, q. 

2. Wo-magnon bound states in the triangular lattice 

In this section we prove the existence of two-magnon bound states for any wave 
vector in a triangular Heisenberg ferromagnet. The Hamiltonian we consider reads 

'H = - J c S, . sit, 
i ,6  

where i labels the sites of a triangular lattice, 6 joins the site i with its six nearest 
neighbours (NN), S, is the spin localizcd on the site i and J > 0 is the ferromagnetic 
NN exchange coupling. The two-magnon eigenstate IK) for the bosonic equivalent 
Hamiltonian, obtained from the Heisenberg Hamiltonian (2.1) by the Dyson-Maleev 
transformation 171, reads 

IW = cfK(9)n!,a!z10) , 
where a: is the creation operator of a magnon of wave vector k, 

k ,  = $ K + q  k 2 = $ K - q  

and fK(q) satisfies the equation 

h (w - w p t q  - W ' ; K - q  ) f K ( d  

1 = G J F  ( Y , + ~  + y q - p  - YkKt, - Y';K-,) f d p )  
P 

where 

In (2.5) w 

y, = 5 1 (cos q, + 2 cos $qz cos $qy) 

tW = E -  Eo. 

(2.3) 

(2.4) 

have assumed the lattice space constant to , unity. (2.6) E is the 
eigenvalue of the eigenstate IK) and Eo is the energy of the ferromagnetic ground 
state IO). The solution of (2.4) is obtained by looking for the zeros of the following 
determinantal equation 

- D j c o s $ K i ) l = O  i , j = 1 , 2 , 3  (27) 
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where 

The n 

We look for solutions of (2.7) moving along high symmetry directions like TM (K, = 
0,  0 < Ky < 2 x / & ) ,  TX (0 < K, < 4x13, IC, = 0) and MX (0 < ICs < 2x13, 
IC, = 2x/&). Along these high symmetry direcfions the possible solutions of (2.7) 
are given by 

1 1---I -0 
2s O -  

(2l la)  

(2 1 lb) 1 1 
2 s  4 s2 

l - - ( I , + I ; ) + - ( l * l ; - 2 1 2 1 ~ ) = o .  

Along the TM direction we have 

(2.12) 

with x = $q=, y = Y!z qy and 

d ( 6 , K y , x , y ) = 6 + 2 s i n 2 x + 2 c o s 4 1 C y ( 1  -cosxcosy) (2.13) 

where 6 is the ‘binding energy’ in units of S J S ,  so that the bound state energy reads 

fwss = 16JS (1 - cos $Ky) - 8JS6 (2.14) 
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As one can see, by a direct numerical calculation (2.110) has no solution for any 
wave vector so that the only bound state along the r M  direction has to be found 
as a solution of (2.llb). Numerical investigation of (2.11b) leads to a bound state 
for wave vectors in the range 0.55KY < IC, < KzB (IC,"" = 2 n / 8 )  in the 
most favourable case (S = 1/2) in agreement with b], even though the present 
numerical accuracy is enhanced. Incidentally, at the zone boundary (point M), where 
the integrals of (215)-(2.18) can be evaluated analytically, one finds that the binding 
energy is 

1 
4S(25 + 1)'  t5= 

For vanishing wave vectors the solution of (2.llb) can only be achieved by evaluating 
analytically the logarithmically divergent contributions of integrals (2.16) and (2.18). 
In the neighbourhood of the zone centre one has 

Iz  =-&I, 

6 1; = -;I ,  - -h'i In 6. 
647r 

Replacing (2.20)-(2.23) in (Zllb) one obtains 

(l--&I,) (l+&&I<~ln6) 2 0 .  

(2.21) 

(222) 

(2.23) 

The first factor of (2.24) never vanishes whereas the second factor leads to a binding 
energy 

As one can see, a bound state exists for any wave vector and any S even though the 
binding energy decreases exponentially as the the wave vector moves towards the zone 
centre. This exponential decaying of the binding energy for K,, - 0 explains why 
the numerical approach is hopeless. Note that the numerical solution for S = 1/2 
is found only in the range 0.55K;' < IC, < (at IC, = 0.551C;', 6 is 
8.4 x It is obvious that the value of 6 for vanishing IC8 is so small that 
numerical accuracy is low. For S > 1 /2 the region is more and more restricted. Let 
us now comment upon the appealing argument of Mattis 121 supporting the existence 
of at least one bound state for any wave vector in ZD models. This argument gives the 
right answer but it is not rigorous since it supports logarithmic divergence of integrals 
like (2.12) or (215)-(2.18) as 6 -* 0 caused by the vanishing of the denominators as 
K -t 0. This argument does not take care of the possible vanishing of the numerators 
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which could regularize the integrals. For instance, in the triangular lattice, I,, I, and 
l2 are regular, whereas I ;  and I; are logarithmically divergent as shown by (220)- 
(2.23). On the other hand this divergence is sufficient to assure the existence of one 
bound state for all wave vectors along the r M  direction. 

When evaluated for 0 < IC, < 4n/3, I(, = 0 (rX direction), the integrals 
appearing in (211) become 

2sin2 xsin’ y 
lo= $1 1 dxdyd(6,1C, ,x ,y)  

* r  

(2.29) 
cos 2 1  (cos x cos y - cos $ K z )  

I ,  = -$ Jd‘R dx  dy 
d(6, K.,x,Y) 

where 

d(6,hCz,x,y) = 6 + 2 c o s $ I C , s i n 2 z + 2 c o s ~ K ~ ( l  - cosxcosy )  ( 2 3 1 ~ )  

for 0 < K= < 0.893751(2B (KzB = 4 ~ / 3 )  and 

cos 4 IC, 
2 cos ; Kz + 2 cos x cos y d(6,1<z,x,y) = ~ - ~ C O S ~ I C , C O S ~ X - C O S ~ K ,  

(2.31b) 

for 0.893751<:B < I(, < KzB. The bound state energy reads 

hwBs = 2 4 5 5  [ I  - $ (cos ;Kz + 2cos aKz)] - 8556 (2.32.7) 

for 0 < K= < 0.893 75 Ii:” and 

cos2 $K2 )] - 8 JS6 (2.326) 
2 cos ;Kz 

for 0.89375KzB < Kr < KzB. The expressions (231) for d(6, hwz,x,  y) and (232) 
for hw,, concerning different ranges of wave vectors, are introduced by the different 
analytic expression of the lower bound of the two-magnon band and are obtained for 
the relative wave vecton q = 0 or p = (arccos[(-cos IC,/4)/(2cosIC,/2)],0), 
respectively. The value Kz = 0.893 75 KzB = 4 arccos Qc-1 + m) is the point 
where these two different determinations cross each other. Equation (2.11~) gives a 
bound state for S = 1 /2  in the range 0.913051<~B < KS < KzB and no bound 
states for S > 1. On the contrary (2.11b) gives a bound state for any S and any 
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wave vector. Once again the numerical solution is found only in the range 0.5 I(,"" < 
IC= < KZB in the most favourable case of S = 1/2 (at K,  = ICzB, 6 = 3 . 4 2 ~ 1 0 - ~  
whereas the analytic evaluation of integrals (2.27)-(230) close to the mne centre still 
leads to (224) where IC, is replaced by K,. The binding energy is then 

and the bound state energy for K - 0 is given by (1.1). 

become 
Along MX (0 < IC= < 2a/3, Kg = 2?r/fi) the integrals appearing in (2.11) 

(2.35) 

sin :ICz 
2 cos +I<= 4 6 ,  Ii,.x,y) =6+2cos$I~ .=s in2x+s in  $ K =  

The bound state energy is 

sin2 f ~ = ) ]  - 8 556.  
2cos $ K z  

(2.40) 

Equation (2.11a) leads to a bound state for any wave vector between Kc = 0 (point 
M) and KZB = 2 ~ / 3  @oint X) for S = 1/2 while the range is restricted to 
0 < K,  < 0.90783KzB, 0 < ICz <0.690121CzB, and 0 < IC, <0.544881CzB, 
for S = 1, S = 3/2 and S = 2, respectively. Notice that the existence range of 
this bound state along the MX direction obtained by numerical calculation is reliable, 
because the integral I, given by (2.34) is not singular up to the lower bound of the 
two-magnon band (6 = 0). As one can see, the point A, where this bound state 
merges with the continuum, jumps dismntinuously towards point M as S increases. 
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This behaviour is analogous to what happens in higher dimensions where the existence 
region of bound states narrows as S increases. 

Equation (2.116) has a solution for any S and any wave vector although the 
numerical solution is found only for K, > 0.2 as found in [SI, even though our nu- 
merical accuracy is better. Indeed, integrals (235)-(238) can be evaluated analytically 
close to M leading to 

Replacement of (241)<244) in (211b) gives 

so that the binding energy is 

6 = - 1 (-7 as-1 Ai';. 
32s2 4 s - 1  

(2.45) 

In figure 1 we show the bound states along the high symmetry directions rX, XM 
and rM for S = 1/2. The inset shows the Brillouin mne of the triangular lattice. 
Fbr different values o f  S the scenario is qualitatively unchanged. 

Pigum t Reduced bund  staie energy hwss j 8  J S  
(full circles) as a funclion of the reduced wave 
=tor along the directions rX, XM and rM of 
the hiangular ferromagnet with S = 1 j 2 .  Ihe 
mntinuous curve tepments the totiom of the two- 
magnon continuum. The inset shows the Brillouin 
zone. 

- 
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3. Summary and conclusions 

The study of two-magnon bound states in Heisenberg ferromagnets has been widely 
investigated in the past [SI. Satisfactory results are obtained only for ferromagnets 
for which the ground state is known and the eigenvalues can be worked out exactly. 
However, we have found that the actual evaluation of the involved integrals, usually 
performed numerically [SI, is very delicate in ZD systems where at least one bound 
state exists for all wave vectors even though its binding energy is so small that it 
can be found only via analytic calculations. We have proved the existence of one 
bound state over the whole Brillouin zone in the triangular lattice in contrast with 
previous numerical results [5] and we have also explained the failure of numerical 
calculation. We conclude that the existence of at least one bound state over the 
whole Brillouin zone is a genuine feature of all 2D ferromagnetic Heisenberg models 
in agreement with the Mattis argument [2]. The customary numerical approach, that 
works well for 3D models and even for large enough wave vectors in 2D models, fails 
when the bound state is too close to the bottom of the two-magnon continuum. The 
absence of two-magnon bound states in some regions of the Brillouin zone of the 
triangular ferromagnet (5) is simply due to insufficient numerical accuracy. We stress 
that this limitation is strictly related to the nature of the singularity of the integrals 
and cannot be easily overcome. Analytic testing is necessary. Note that in a 3D 
model any interlayer coupling J’ prevents the divergence of the integrals, so that 
the numerical evaluation of the bound stata becomes reliable. Our  conclusion is 
that two-magnon bound states can be satisfactorily studied in ferromagnetic systems 
if one proceeds cautiously. On the contrary, in antiferromagnets and helimagnets the 
situation is much worse because no exact analytic condition for the bound state can 
be achieved because the exact ground state is unknown. A few approximate results 
exist for antiferromagnets [9] but nothing at all for helimagnets. 
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